isotropic thermal parameters $(Å^2)$

$U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i . \mathbf{a}_j.$

	x	у	z	U_{eq}
S(1)	0.1563	0.1611(1)	0.0696	0.039 (1
S(2)	0.0103 (3)	0.2326(1)	-0.1464(2)	0.036 (1
N(1)	0.1492 (6)	0.1057 (2)	-0.0498 (5)	0.036 (2
N(2)	-0.0007 (6)	0.1757 (2)	-0.2632 (5)	0.035 (2
N(3)	-0.1527 (6)	0.2357 (2)	-0.1057 (6)	0.036 (2
N(4)	-0.0149 (7)	0.1620 (2)	0.1014 (6)	0.041 (2
N(5)	0.0368 (7)	0.0692 (2)	-0.3013 (5)	0.036 (2
N(6)	-0.3056 (7)	0.1882 (2)	0.0136 (6)	0.037 (2
C(1)	0.0569 (7)	0.1174 (3)	-0.2033 (7)	0.031 (2
C(2)	-0.1569 (8)	0.1940 (3)	0.0012 (6)	0.031 (2
C(3)	0.1265 (9)	0.0079 (3)	-0.2451 (8)	0.049 (3
C(4)	-0.0584 (8)	0.0766 (3)	-0.4700 (6)	0.040 (2
C(5)	-0.2034 (9)	0.0275 (3)	-0.5392 (7)	0.047 (3
C(6)	-0.3446 (9)	0.0329 (3)	-0.4813 (7)	0.046 (3
C(7)	-0.4694 (8)	0.0884 (3)	-0.5533 (7)	0.042 (2
C(8)	-0.5770 (8)	0.1060 (3)	-0.4665 (7)	0.044 (2
C(9)	-0.4698 (8)	0.1458 (3)	-0.3202 (7)	0.040 (2
C(10)	-0.5695 (8)	0.1685 (3)	-0.2322 (8)	0.049 (3
C(11)	-0.4698 (8)	0.2147 (3)	-0.1037 (7)	0.044 (3
C(12)	-0.3163 (9)	0.1473 (3)	0.1334 (7)	0.048 (3

Table 2. Geometric parameters (Å, °)

		•	
S(1)-S(2)	2.408 (2)	S(1) - N(1)	1.606 (5)
S(1) - N(4)	1.610 (7)	S(2) - N(2)	1.604 (5)
S(2)—N(3)	1.593 (7)	N(1) - C(1)	1.350(7)
N(2) - C(1)	1.343 (7)	N(3)-C(2)	1.353 (8)
N(4)—C(2)	1.348 (7)	N(5) - C(1)	1.334 (8)
N(5) - C(3)	1.466 (7)	N(5)C(4)	1.463 (7)
N(6)-C(2)	1.324 (10)	N(6) - C(11)	1.467 (7)
N(6)-C(12)	1.460 (9)	C(4)—C(5)	1.516 (9)
C(5)-C(6)	1.528 (12)	C(6)C(7)	1.518 (8)
C(7)-C(8)	1.521 (11)	C(8)—C(9)	1.537 (8)
C(9)-C(10)	1.505 (11)	C(10) - C(11)	1.500 (8)
S(2) - S(1) - N(1)	89.6 (2)	S(2) - S(1) - N(4)	89.0 (2)
N(1) - S(1) - N(4)	112.5 (3)	S(1) - S(2) - N(2)	89.3 (2)
S(1) - S(2) - N(3)	89.8 (2)	N(2) - S(2) - N(3)	113.8 (3)
S(1) - N(1) - C(1)	117.7 (4)	S(2) - N(2) - C(1)	118.4 (4)
S(2) - N(3) - C(2)	117.9 (4)	S(1) - N(4) - C(2)	118.4 (5)
C(1) - N(5) - C(3)	121.0 (4)	C(1) - N(5) - C(4)	122.2 (5)
C(3) - N(5) - C(4)	116.5 (5)	C(2) - N(6) - C(11)	121.7 (6)
C(2) - N(6) - C(12)	120.6 (5)	C(11) - N(6) - C(12)	117.1 (6)
N(1) - C(1) - N(2)	123.9 (5)	N(1) - C(1) - N(5)	117.5 (5)
N(2) - C(1) - N(5)	118.3 (5)	N(3) - C(2) - N(4)	123.1 (6)
N(3) - C(2) - N(6)	117.7 (5)	N(4) = C(2) = N(6)	119.1 (6)
N(5) - C(4) - C(5)	111.4 (5)	C(4) - C(5) - C(6)	114.1 (6)
C(5) - C(6) - C(7)	113.4 (6)	C(6) - C(7) - C(8)	113.9 (6)
C(7)-C(8)-C(9)	111.4 (5)	C(8) - C(9) - C(10)	114.9 (5)
C(9) - C(10) - C(11)	113.8 (6)	N(6) - C(11) - C(10)	113.2 (5)

We gratefully acknowledge support from the National Science Foundation (grant CHE-9106903).

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71432 (14 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HH1065]

References

Amin, M. & Rees, C. W. (1989). J. Chem. Soc. Perkin Trans. 1, pp. 2495-2501.

©1994 International Union of Crystallography Printed in Great Britain - all rights reserved

- Table 1. Fractional atomic coordinates and equivalent Ernest, I., Holick, W., Rihs, G., Schomburg, D., Shoham, G., Wenkert, D. & Woodward, R. B. (1981). J. Am. Chem. Soc. 103, 1540-1544.
 - Gleiter, R., Bartetzko, R. & Cremer, D. (1984). J. Am. Chem. Soc. 106, 3437-3442.
 - Pascal, R. A. Jr (1993). Pure Appl. Chem. 65, 105-110.
 - Sheldrick, G. M. (1990). SHELXTL-Plus. Release 4.21. Siemens Analytical Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1994). C50, 110-112

Structure du L-2-(1,2:5,6-Di-Oisopropylidène- α -D-allofuranos-3-yl)dibenzylglycinate de tert-Butyle, C₃₂H₄₃NO₈

ANGÈLE CHIARONI ET CLAUDE RICHE

Institut de Chimie des Substances Naturelles, CNRS, 91198 Gif-sur-Yvette CEDEX, France

S. BOUIFRADEN, N. ITTOBANE, J.-P. LAVERGNE ET P. VIALLEFONT

URA 468, Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier CEDEX 5, France

(Reçu le 18 mars 1993, accepté le 3 mai 1993)

Abstract

The condensation reaction of the enolate of *tert*-butyl dibenzylaminoacetate with the carbonyl of 1,2:5,6-di-Oisopropylidene- α -D-ribo-hexofuranos-3-ulose is diastereoselective and leads to the title compound with absolute stereochemistry $2S_3'R$. The furanose ring has a half-chair conformation. An intramolecular hydrogen bond links the hydroxyl group at C3' to the carboxyl O atom of the glycinate group.

Commentaire

La condensation de l'énolate issu du dibenzylaminoacétate de tert-butyle sur le carbonyle du 1.2:5.6-di-Oisopropylidène- α -D-*ribo*-hexofuranos-3-ulose est doublement diastéréosélective. Elle conduit exclusivement au stéréoisomère 2S,3'R du glycosyl- α -amino ester (1) dont la stéréochimie a été précisée par la détermination de

Acta Crystallographica Section C ISSN 0108-2701 ©1994

sa structure cristalline. La molécule est présentée sur la Fig. 1 en perspective avec la numérotation utilisée. Le cycle furanosique est dans une conformation demi-chaise alors que les cycles isopropylidènes adoptent des conformations demi-chaise fortement aplaties. Une liaison hydrogène intramoléculaire relie l'hydroxyle en C3' avec le carbonyle O1 [O3'-H···O1 2,737 (4), H···O1 1,96 Å, O3'-H-O1 132°]. Les atomes O1, C1, C2, C3', O3' et HO3' forment approximativement une chaise dans laquelle les atomes C2 et HO3' s'écartent du plan moyen des quatre autres atomes de -0,560(3) et 0,28 Å, respectivement.

Fig. 1. Vue en perspective de la molécule montrant la numérotation utilisée.

Partie expérimentale

Données cristallines C₃₂H₄₃NO₈ $M_r = 569,69$ Orthorhombique $P2_{1}2_{1}2_{1}$ a = 13,679 (4) Å b = 15,182 (4) Å c = 15,390(3) Å V = 3196,1 (14) Å³ Z = 4 $D_{\rm r} = 1.18 {\rm Mg m}^{-3}$ Collection des données Diffractomètre Nonius $\theta_{\text{max}} = 66,69^{\circ}$ $h = -16 \rightarrow 16$ CAD-4 Balayage $\theta/2\theta$ $k = 0 \rightarrow 18$ Correction d'absorption: $l = 0 \rightarrow 17$ néant 5598 réflexions mesurées 3 réflexions de référence 3000 réflexions fréquence: 166 min indépendantes variation d'intensité: 2407 réflexions observées $[I > 3,0\sigma(I)]$

Cu $K\alpha$ radiation $\lambda = 1,5418 \text{ Å}$ Paramètres de la maille à l'aide de 25 réflexions $\theta = 10.5 - 22.3^{\circ}$ $\mu = 0.65 \text{ mm}^{-1}$ T = 293 KPrisme $0,30 \times 0,20 \times 0,15 \text{ mm}$ Incolore $R_{\rm int} = 0,023$

néant

Affinement basé sur les F	$w = 1/[\sigma^2(F) + 0.0014F^2]$
R = 0,049	$(\Delta/\sigma)_{\rm max} = 0.08$
wR = 0,069	$\Delta \rho_{\rm max}$ = 0,52 e Å ⁻³
S = 1,55	$\Delta \rho_{\rm min}$ = -0,29 e Å ⁻³
2403 réflexions	Facteurs de diffusion de
370 paramètres	International Tables for
Les paramètres des atomes d'hydrogène en position	X-ray Crystallography (1974, Tome IV, Table
théorique	2.2B)

Collection des données: CAD-4 Software (Enraf-Nonius, 1989). Réduction des données: NONIUS (Riche, 1989). Programme(s) pour la solution de la structure: SHELXS86 (Sheldrick, 1986). Programme(s) pour l'affinement de la structure: SHELX76 (Sheldrick, 1976). Les dessins ont été obtenus à l'aide de R3M (Riche, 1983); ORTEP (Johnson, 1965). Programme(s) pour la préparation du manuscrit: ACTACIF (Riche, 1992).

Tableau 1. Coordonnées atomiques et facteurs d'agitation thermique isotropes équivalents ($Å^2$)

$U_{\text{éq}} = \frac{1}{3} \sum_{i} \sum_{j} U_{ij} a_{i}^{*} a_{i}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}.$

	x	у	z	$U_{\acute{e}a}$
Cl	0,5627 (3)	0,5086 (2)	0,6317 (2)	0,047(3)
C2	0,6427 (3)	0,4551 (2)	0,5870(2)	0,042 (3)
C1′	0,7227 (3)	0,3751 (3)	0,4143 (3)	0,052 (4)
C2′	0,6834 (3)	0.3245 (3)	0.4921 (2)	0.046 (3)
C3′	0,6002 (2)	0,3817 (2)	0,5269 (2)	0.042 (3)
C4′	0,5629 (3)	0,4206 (3)	0,4394 (2)	0,048 (3)
C5′	0,5028 (3)	0,5048 (3)	0,4358 (3)	0,058 (4)
C6′	0,4830 (3)	0,5326 (4)	0,3421 (3)	0.077 (5)
C7	0,3372 (3)	0,5182 (4)	0,4115 (4)	0,078 (5)
C8	0,2585 (5)	0,4509(7)	0,4061 (7)	0,139 (11)
C9	0,2980 (8)	0,6041 (7)	0,4342 (7)	0,191 (16)
C10	0,6918 (4)	0,2315 (3)	0,3731 (3)	0,066 (5)
C11	0,7732 (6)	0,1664 (5)	0,3816(5)	0,143 (11)
C12	0,6169 (6)	0,2060 (6)	0,3087 (5)	0,144 (11)
C15	0,5249 (4)	0,6571 (3)	0,6846 (3)	0,065 (4)
C16	0,4289 (4)	0,6641 (4)	0,6373 (4)	0,097 (7)
C17	0,5155 (5)	0,6328 (4)	0,7784 (3)	0,084 (6)
C18	0,5850 (5)	0,7413 (3)	0,6743 (4)	0,090 (7)
C19	0,6713 (3)	0,3801 (3)	0,7291 (3)	0,056 (4)
C20	0,7459 (3)	0,3260 (3)	0,7764 (3)	0,059 (4)
C21	0,7882 (5)	0,2550 (4)	0,7385 (4)	0,100 (7)
C22	0,8527 (7)	0,2020 (5)	0,7839 (6)	0,141 (11)
C23	0,8734 (6)	0,2182 (6)	0,8676 (6)	0,128 (11)
C24	0,8333 (5)	0,2902 (5)	0,9073 (5)	0,107 (8)
C25	0,7694 (4)	0,3445 (3)	0,8620 (3)	0,077 (5)
C26	0,7868 (3)	0,4903 (3)	0,6752 (3)	0,053 (4)
C27	0,8587 (3)	0,5058 (3)	0,6033 (3)	0,056 (4)
C28	0,9168 (3)	0,4374 (4)	0,5742 (3)	0,076 (5)
C29	0,9836 (4)	0,4515 (6)	0,5063 (5)	0,108 (9)
C30	0,9920 (5)	0,5311 (8)	0,4691 (5)	0,124 (11)
C31	0,9351 (6)	0,5990 (6)	0,4973 (5)	0,117 (9)
C32	0,8680 (4)	0,5869 (4)	0,5640 (4)	0,087 (6)
01	0,4888 (2)	0,4764 (2)	0,6623 (2)	0,064 (3)
014	0,5886 (2)	0,5923 (2)	0,6386 (2)	0,055 (3)
01'	0,7324 (3)	0,3138 (2)	0,3482 (2)	0,074 (3)
02'	0,6451 (2)	0,2464 (2)	0,4542 (2)	0,059 (3)
03′	0,5294 (2)	0,3281 (2)	0,5679 (2)	0,053 (3)
O4′	0,6514 (2)	0,4405 (2)	0,3939 (2)	0,055 (3)
05′	0,4088 (2)	0,4904 (2)	0,4720 (2)	0,079 (4)
06'	0,3843 (3)	0,5189 (4)	0,3305 (3)	0,120 (6)
N2	0,7139 (2)	0,4225 (2)	0,6511 (2)	0,042 (3)
HO3'	0,47909	0,36658	0,59578	0,058
				٥
	Tableau 2.	. Paramètres g	éométriques	(Å, °)
		0		

C1-C2	1,527 (5)	C10-01'	1,420 (6)
C1-01	1,217 (5)	C10-O2'	1,420 (5)
C1—O14	1,323 (4)	C15-C16	1,505 (8)

$C_{32}H_{43}NO_8$

C2-C3'	1,561 (5)	C15-C17	1,496 (7)
C2—N2	1,473 (4)	C15-C18	1,529 (7)
C1'-C2'	1,521 (5)	C15-014	1,494 (5)
C1'01'	1,384 (5)	C19-C20	1,499 (6)
C1'04'	1,426 (5)	C19—N2	1.482 (5)
C2'-C3'	1.529 (5)	C20-C21	1,354 (8)
C2' - O2'	1,422 (5)	C20-C25	1.385 (6)
C3' - C4'	1 555 (5)	C21-C22	1.383 (11)
$C_{3}' - O_{3}'$	1 414 (4)	$C^{22} - C^{23}$	1 342 (14)
C4' - C5'	1,520 (6)	$C^{23} - C^{24}$	1 367 (12)
C4' - O4'	1,320 (0)	$C_{24} = C_{25}^{24}$	1,390 (9)
$C_{1}^{*} - C_{1}^{*}$	1,431 (4)	C26-C27	1,500 (5)
$C_{5}^{\prime} = C_{5}^{\prime}$	1,527 (7)	C26—N2	1,300 (5)
$C_{5} = 0_{5}$	1,410 (5)	$C_{20} = 112$	1,400 (3)
$C_0 = 0.0$	1,377 (0)	$C_{27} = C_{28}$	1,382(7)
$C_{7} = C_{8}$	1,467 (10)	$C_{27} = C_{32}$	1,377(7)
C_{7}^{-} C_{7}^{+}	1,432 (12)	$C_{20}^{20} = C_{20}^{20}$	1,403 (8)
$C_{1} = 03$	1,410(0)	$C_{29} = C_{30}$	1,342(13)
C/=08	1,405 (7)	C30-C31	1,302 (13)
	1,495 (9)	C31-C32	1,390(10)
C10-C12	1,4/8 (9)		
C2-C1-O1	123,7 (3)	C12-C10-O2'	108,6 (5)
C2-C1-O14	110,8 (3)	O1'-C10-O2'	105,9 (3)
O1-C1-O14	125,3 (3)	C16C15C17	114,2 (4)
C1C2C3'	112,3 (3)	C16-C15-C18	111.1 (4)
C1 - C2 - N2	110.6 (3)	C16-C15-O14	109.0 (4)
C3' - C2 - N2	113.8 (3)	C17-C15-C18	110.6 (4)
$C_{2}^{2} - C_{1}^{2} - O_{1}^{2}$	105.8 (3)	C17-C15-014	110.2(4)
$C_{2}^{\prime} - C_{1}^{\prime} - O_{4}^{\prime}$	106 5 (3)	C18 - C15 - O14	100.8 (4)
01' - 01' - 04'	1118(3)	C_{20} C_{19} N_{2}	111 3 (3)
C_{1}^{\prime} C_{2}^{\prime} C_{3}^{\prime}	104 5 (3)	$C_{10} - C_{20} - C_{21}$	1212(4)
C1' - C2' - C3'	1032(3)	C19 - C20 - C21	121,2(4)
$C_1 = C_2 = O_2$	103,2(3)	C13 - C20 - C25	120,5 (4)
$C_{3} - C_{2} - C_{2}$	100.6 (3)	$C_{21} = C_{20} = C_{23}$	110,2 (5)
$C_2 = C_3 = C_2$	109,0 (3)	$C_{20} = C_{21} = C_{22}$	121,2(0)
(2-(3)-(4))	111,5 (5)	$c_{21} = c_{22} = c_{23}$	120,8 (8)
12 - 13 - 03	113,7(3)	$C_{22} - C_{23} - C_{24}$	119,5 (8)
$C_2 = C_3 = C_4$	99,1 (3)	023-024-025	120,1(7)
$C_2 = C_3 = 0_3$	109,8 (3)	C20C25C24	120,1 (5)
$C4^{\circ} - C3^{\circ} - O3^{\circ}$	112,3 (3)	C27-C26-N2	111,5 (3)
C3' - C4' - C5'	121,8 (3)	C26-C27-C28	119,8 (4)
$C3^{\circ} - C4^{\circ} - 04^{\circ}$	103,1 (3)	$C_{26} - C_{27} - C_{32}$	121,6 (4)
C5' - C4' - O4'	105,2 (3)	C28—C27—C32	118,5 (4)
C4' –C5' –C6'	111,2 (4)	C27-C28-C29	120,0 (5)
C4' C5' O5'	110,2 (3)	C28-C29-C30	120,7 (7)
C6' – C5' – O5'	104,6 (3)	C29—C30—C31	119,7 (8)
C5' —C6' —O6'	104,8 (4)	C30-C31-C32	120,9 (7)
C8-C7-C9	111,3 (7)	C27-C32-C31	120,2 (5)
C8-C7-O5'	109,4 (5)	C1-014-C15	120,9 (3)
C8-C7-O6'	106,7 (5)	C1' - O1' - C10	110,8 (3)
C9–C7–O5′	111,4 (6)	C2' - O2' - C10	109,1 (3)
C9—C7—O6′	112,1 (6)	C1'O4'C4'	108,9 (3)
O5'-C7-O6'	105,5 (4)	C5'-O5'-C7	108,9 (4)
C11-C10-C12	113,7 (5)	C6'-06'-C7	109,6 (4)
C11C10O1'	108,3 (5)	C2-N2-C19	115,4 (3)
C11-C10-O2'	111,3 (4)	C2-N2-C26	112,3 (3)
C12-C10-O1'	108,8 (5)	C19—N2—C26	111,4 (3)
	14 4 (2)	C7 05' C5' C6'	75(4)
04 - 01 - 02 - 03	14,4 (3)	05' - 05' - 05' - 06'	- 7,5 (4)
C1 = C2 = C3 = C4	33,3 (3)	$C_{1}^{\prime} = C_{2}^{\prime} = C_{2}^{\prime} = C_{2}^{\prime} = C_{2}^{\prime}$	47.2 (4)
$C_2 = C_3 = C_4 = C_4$	-41,0 (3)	$C_2 = C_3 = C_2 = N_2$	-47,2 (3)
$C_{4} = C_{4} = -C_{4} = -C_{4}$	33,3(3)	$C_2 = C_3 = C_2 = C_1$	-1/3,8 (4)
$C_{4} = -C_{4} = -C_{1} = -C_{2}^{2}$	-13,4(3)	$C_{2} = C_{2} = C_{1} = O_{14}$	- 143,8 (4)
$C_1 - C_2 - C_2 - C_10$	25,5 (3)		
$C_2 = 0_2 = C_10 = 01'$	- 19,5 (3)	C1 - U14 - U13 - U18	-1/9,0 (3)
02 - CIU - OI - CI'	0,9(4)	$C_{2} = C_{2} = N_{2} = C_{19}$	- /9,0 (3)
$C_{10} = O_1 = C_1^2 = C_2^2$	7,5 (5)	$C_{3} - C_{2} - N_{2} - C_{2} C_{3}$	151,4 (4)
01 - 01 - 02' - 02'	- 18,5 (3)	$C_2 = N_2 = C_19 = C_20$	102,9 (4)
$C_{3}^{2} - C_{4}^{2} - C_{5}^{2} - C_{6}^{2}$	1/5,2 (5)	$N_2 - C19 - C20 - C21$	-03,2 (4)
$10^{\circ} - 10^{\circ} - 00^{\circ} - 07^{\circ}$	21,8 (4)	$C_2 = N_2 = C_{26} = C_{27}^2$	- /3,0 (3)
$C_{0} = -C_{0} = -C_{7} = -C_{5}$	-26,9 (4)	N2-C26-C27-C28	-60,4 (4)
U6' C'/ O5' C5'	20,6 (4)		

Les facteurs d'agitation thermique isotropes des atomes H sont égaux à 1,10 $U_{éq}$ des atomes portuers. On observe un pic résiduel de 0,5 e Å⁻³ au voisinage de l'atome O6'. Nous n'avons pas tenu compte de ce pic (*P*) impliquant un désordre du cycle isopropylidène (*P*···O6' = 1,20, C6'··· *P* = 1,70, C9···*P* = 1,47 Å)

© 1994 International Union of Crystallography Printed in Great Britain – all rights reserved Les listes des facteurs de structure, des facteurs d'agitation thermique anisotropes et des coordonnées des atomes d'hydrogène ont été déposées au dépôt d'archives de la British Library Document Supply Centre (Supplementary Publication No. SUP 71311: 12 pp.). On peut en obtenir des copies en s'adressant à: The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, Angleterre. [Référence de CIF: PA1055]

Références

- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, Les Pays-Bas.
- Johnson, C. K. (1965). ORTEP. Rapport ORNL-3794. Oak Ridge National Laboratory, Tennessee, EU.
- Riche, C. (1983). R3M. Représentation et Manipulation de Modèles Moléculaires. Institut de Chimie des Substances Naturelles du CNRS, Gif-sur-Yvette, France.
- Riche, C. (1989). Logiciel de Préparation des Données pour un Diffractomètre Nonius CAD-4. Institut de Chimie des Substances Naturelles du CNRS, Gif-sur-Yvette, France.
- Riche, C. (1992). ACTACIF. Institut de Chimie des Substances Naturelles du CNRS, Gif sur Yvette, France.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. de Cambridge, Angleterre.
- Sheldrick, G. M. (1986). SHELXS86. Program for the Solution of Crystal Structures. Univ. de Göttingen, Allemagne.

Acta Cryst. (1994). C50, 112-115

4-Cyanophenyl 4-Perfluoroheptylbenzoate

P. KROMM, J.-P. BIDEAU AND M. COTRAIT

Laboratoire de Cristallographie, Université Bordeaux I, 351, Cours de la Libération, F-33405 Talence CEDEX, France

C. DESTRADE AND H. NGUYEN

Centre de Recherche Paul Pascal, Domaine Universitaire, F-33405 Talence CEDEX, France

(Received 15 April 1993; accepted 8 July 1993)

Abstract

The title compound, $C_{21}H_8F_{15}NO_2$, adopts a bent conformation with the perfluorinated aliphatic chain fully extended. The molecular arrangement is characterized by the segregation of the cores with the CN end groups on one side and the perfluorinated aliphatic chains on the other. The molecules form bilayer sheets parallel to the yOz plane; the thickness of the bilayers is equal to the *a* parameter. The interactions between the sheets are very weak.